ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion.

نویسندگان

  • Elise Fouquerel
  • Eva M Goellner
  • Zhongxun Yu
  • Jean-Philippe Gagné
  • Michelle Barbi de Moura
  • Tim Feinstein
  • David Wheeler
  • Philip Redpath
  • Jianfeng Li
  • Guillermo Romero
  • Marie Migaud
  • Bennett Van Houten
  • Guy G Poirier
  • Robert W Sobol
چکیده

ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD(+) depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.

Excessive poly(ADP-ribose) (PAR) polymerase-1 (PARP-1) activation kills cells via a cell-death process designated "parthanatos" in which PAR induces the mitochondrial release and nuclear translocation of apoptosis-inducing factor to initiate chromatinolysis and cell death. Accompanying the formation of PAR are the reduction of cellular NAD(+) and energetic collapse, which have been thought to b...

متن کامل

ARTD1 Suppresses Interleukin 6 Expression by Repressing MLL1-Dependent Histone H3 Trimethylation.

ADP-ribosyltransferase diphtheria-toxin like 1/poly(ADP-ribose) polymerase 1 (ARTD1/PARP1) is a chromatin-associated protein in the nucleus and plays an important role in different cellular processes such as regulation of gene transcription. ARTD1 has been shown to coregulate the inflammatory response by modulating the activity of the transcription factor nuclear factor κB (NF-κB), the principa...

متن کامل

SET7/9-dependent methylation of ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative stress

ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein-protein interactions and is implicated in many biological processes and diseases. SET7...

متن کامل

p53, DNA damage, and NAD+ homeostasis

The tumor suppressor p53 is a well-characterized regulator of energy metabolism. p53 transcriptionally regulates a number of major metabolic regulators such as 5′ AMP-activated protein kinase (AMPK) and regulators of AMPK including the sestrins, mTOR through TsC1/ TsC2, and glycolytic modulators such as TiGAR, hexokinase, and sCO2, which affect cellular oxidative stress.1 Moreover, p53 has 2 de...

متن کامل

SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1.

Poly(ADP-ribose) polymerase 1 (PARP1) and SIRT1 deacetylase are two NAD-dependent enzymes which play major roles in the decision of a cell to live or to die in a stress situation. Because of the dependence of both enzymes on NAD, cross talk between them has been suggested. Here, we show that PARP1 is acetylated after stress of cardiomyocytes, resulting in the activation of PARP1, which is indep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2014